Fixed point iterations of generalized nonexpansive mappings
نویسندگان
چکیده
منابع مشابه
Fixed Point Iterations of a Pair of Hemirelatively Nonexpansive Mappings
where 〈·, ·〉 denotes the generalized duality pairing. A Banach space E is said to be strictly convex if ‖ x y /2‖ < 1 for all x, y ∈ E with ‖x‖ ‖y‖ 1 and x / y. It is said to be uniformly convex if limn→∞‖xn − yn‖ 0 for any two sequences {xn} and {yn} in E such that ‖xn‖ ‖yn‖ 1 and limn→∞‖ xn yn /2‖ 1. Let UE {x ∈ E : ‖x‖ 1} be the unit sphere of E. Then the Banach space E is said to be smooth ...
متن کاملOn the Fixed-Point Set of a Family of Relatively Nonexpansive and Generalized Nonexpansive Mappings
We prove that the set of common fixed points of a given countable family of relatively nonexpansive mappings is identical to the fixed-point set of a single strongly relatively nonexpansive mapping. This answers Kohsaka and Takahashi’s question in positive. We also introduce the concept of strongly generalized nonexpansive mappings and prove the analogue version of the result above for Ibaraki-...
متن کاملIshikawa Iterations for Equilibrium and Fixed Point Problems for Nonexpansive Mappings in Hilbert Spaces
In this paper, we introduce an iterative scheme Ishikawa-type for finding a common element of the set EP (G) of the equilibrium points of a bifunction G and the set Fix(T ) of fixed points of a nonexpansive mapping T in a Hilbert space H. We prove that the method converges strongly to an element z ∈ Fix(T ) T EP (G) which is the unique solution of the variational inequality 〈(A− γf)z, x− z〉 ≥ 0...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1988
ISSN: 0022-247X
DOI: 10.1016/0022-247x(88)90333-2